Author:
Katehakis Michael N.,Smit Laurens C.
Abstract
A class of Markov chains we call successively lumbaple is specified for which it is shown that the stationary probabilities can be obtained by successively computing the stationary probabilities of a propitiously constructed sequence of Markov chains. Each of the latter chains has a(typically much) smaller state space and this yields significant computational improvements. We discuss how the results for discrete time Markov chains extend to semi-Markov processes and continuous time Markov processes. Finally, we will study applications of successively lumbaple Markov chains to classical reliability and queueing models.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献