A PROBABILISTIC ℓ1 METHOD FOR CLUSTERING HIGH-DIMENSIONAL DATA

Author:

Asamov Tsvetan,Ben-Israel AdiORCID

Abstract

In general, the clustering problem is NP-hard, and global optimality cannot be established for non-trivial instances. For high-dimensional data, distance-based methods for clustering or classification face an additional difficulty, the unreliability of distances in very high-dimensional spaces. We propose a probabilistic, distance-based, iterative method for clustering data in very high-dimensional space, using the ℓ1-metric that is less sensitive to high dimensionality than the Euclidean distance. For K clusters in ℝ n , the problem decomposes to K problems coupled by probabilities, and an iteration reduces to finding Kn weighted medians of points on a line. The complexity of the algorithm is linear in the dimension of the data space, and its performance was observed to improve significantly as the dimension increases.

Publisher

Cambridge University Press (CUP)

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3