Author:
Feng Yarong,Mahmoud Hosam,Rüschendorf Ludger
Abstract
We study the degree profile of random hierarchical lattice networks. At every step, each edge is either serialized (with probability p) or parallelized (with probability 1−p). We establish an asymptotic Gaussian law for the number of nodes of outdegree 1, and show how to extend the derivations to encompass asymptotic limit laws for higher outdegrees. The asymptotic joint distribution of the number of nodes of outdegrees 1 and 2 is shown to be bivariate normal. No phase transition with p is detected in these asymptotic laws.For the limit laws, we use ideas from the contraction method. The recursive equations which we get involve coefficients and toll terms depending on the recursion variable and thus are not in the standard form of the contraction method. Yet, an adaptation of the contraction method goes through, showing that the method has promise for a wider range of random structures and algorithms.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Average measures in polymer graphs;International Journal of Computer Mathematics: Computer Systems Theory;2020-12-30
2. A SPECTRUM OF SERIES–PARALLEL GRAPHS WITH MULTIPLE EDGE EVOLUTION;Probability in the Engineering and Informational Sciences;2019-01-26