TEMPORAL SHAPING OF SIMULATED TIME SERIES WITH CYCLICAL SAMPLE PATHS

Author:

Chen Weiwei,Baveja Alok,Melamed Benjamin

Abstract

Temporal shaping of time series is the activity of deriving a time series model with a prescribed marginal distribution and some sample path characteristics. Starting with an empirical sample path, one often computes from it an empirical histogram (a step-function density) and empirical autocorrelation function. The corresponding cumulative distribution function is piecewise linear, and so is the inverse distribution function. The so-called inversion method uses the latter to generate the corresponding distribution from a uniform random variable on [0,1), histograms being a special case. This paper shows how to manipulate the inverse histogram and an underlying marginally uniform process, so as to “shape” the model sample paths in an attempt to match the qualitative nature of the empirical sample paths, while maintaining a guaranteed match of the empirical marginal distribution. It proposes a new approach to temporal shaping of time series and identifies a number of operations on a piecewise-linear inverse histogram function, which leave the marginal distribution invariant. For cyclical processes with a prescribed marginal distribution and a prescribed cycle profile, one can also use these transformations to generate sample paths which “conform” to the profile. This approach also improves the ability to approximate the empirical autocorrelation function.

Publisher

Cambridge University Press (CUP)

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability

Reference16 articles.

1. Arm processes and modeling methodology

2. Autoregressive to anything: Time-series input processes for simulation;Cario;OR Letters,1996

3. Numerical Methods for Fitting and Simulating Autoregressive-to-Anything Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3