Author:
Peköz Erol A.,Blanchet Jose
Abstract
For theGI/GI/1 queue we show that the scaled queue size converges to reflected Brownian motion in a critical queue and converges to reflected Brownian motion with drift for a sequence of subcritical queuing models that approach a critical model. Instead of invoking the topological argument of the usual continuous-mapping approach, we give a probabilistic argument using Skorokhod embeddings in Brownian motion.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Reference9 articles.
1. Obłój, J. (2004).The Skorokhod embedding problem and its offspring.Probability Surveys 1:321–390.
2. Whitt, W. (2002).Stochastic-process limits. An introduction to stochastic-processlimits and their application to queues.New York:Springer-Verlag.
3. Robert, P. (2003).Stochastic networks and queues.Berlin:Springer-Verlag.
4. Rosenkrantz, W.A. (1980).On the accuracy of Kingman's heavy traffic approximation in thetheory of queues.Zeitschrift für Wahrscheinlichkeitstheorie und VerwundGebiete 51(1):115–121.
5. Skorokhod, A.V. (1965).Studies in the theory of random processes.Reading, MA:Addison-Wesley Publishing.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献