Author:
Ulukus M. Yasin,Kharoufeh Jeffrey P.,Maillart Lisa M.
Abstract
We examine the problem of optimally maintaining a stochastically degrading system using preventive and reactive replacements. The system's rate of degradation is modulated by an exogenous stochastic environment process, and the system fails when its cumulative degradation level first reaches a fixed deterministic threshold. The objective is to minimize the total expected discounted cost of preventively and reactively replacing such a system over an infinite planning horizon. To this end, we present and analyze a Markov decision process model. It is shown that, for each environment state, there exists an optimal threshold-type replacement policy. Additionally, empirical evidence suggests that, when the environment process is monotone, and the state-dependent degradation rates are totally ordered, the optimal threshold is monotone. Lastly, we derive closed-form bounds on the optimal thresholds.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献