Author:
Bate Michael,Martin Benjamin,Röhrle Gerhard
Abstract
Let G be a reductive algebraic group—possibly non-connected—over a field k, and let H be a subgroup of G. If
$G= {GL }_n$
, then there is a degeneration process for obtaining from H a completely reducible subgroup
$H'$
of G; one takes a limit of H along a cocharacter of G in an appropriate sense. We generalise this idea to arbitrary reductive G using the notion of G-complete reducibility and results from geometric invariant theory over non-algebraically closed fields due to the authors and Herpel. Our construction produces a G-completely reducible subgroup
$H'$
of G, unique up to
$G(k)$
-conjugacy, which we call a k-semisimplification of H. This gives a single unifying construction that extends various special cases in the literature (in particular, it agrees with the usual notion for
$G= GL _n$
and with Serre’s ‘G-analogue’ of semisimplification for subgroups of
$G(k)$
from [19]). We also show that under some extra hypotheses, one can pick
$H'$
in a more canonical way using the Tits Centre Conjecture for spherical buildings and/or the theory of optimal destabilising cocharacters introduced by Hesselink, Kempf, and Rousseau.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献