TILTING THEORY FOR GORENSTEIN RINGS IN DIMENSION ONE

Author:

BUCHWEITZ RAGNAR-OLAF,IYAMA OSAMU,YAMAURA KOTA

Abstract

In representation theory, commutative algebra and algebraic geometry, it is an important problem to understand when the triangulated category$\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)=\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$admits a tilting (respectively, silting) object for a$\mathbb{Z}$-graded commutative Gorenstein ring$R=\bigoplus _{i\geqslant 0}R_{i}$. Here$\mathsf{D}_{\operatorname{sg}}^{\mathbb{Z}}(R)$is the singularity category, and$\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$is the stable category of$\mathbb{Z}$-graded Cohen–Macaulay (CM)$R$-modules, which are locally free at all nonmaximal prime ideals of$R$.In this paper, we give a complete answer to this problem in the case where$\dim R=1$and$R_{0}$is a field. We prove that$\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$always admits a silting object, and that$\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R$admits a tilting object if and only if either$R$is regular or the$a$-invariant of$R$is nonnegative. Our silting/tilting object will be given explicitly. We also show that if$R$is reduced and nonregular, then its$a$-invariant is nonnegative and the above tilting object gives a full strong exceptional collection in$\text{}\underline{\mathsf{CM}}_{0}^{\mathbb{Z}}R=\text{}\underline{\mathsf{CM}}^{\mathbb{Z}}R$.

Publisher

Cambridge University Press (CUP)

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Skew graded (A ) hypersurface singularities;Comptes Rendus. Mathématique;2023-02-01

2. Derived categories of skew quadric hypersurfaces;Israel Journal of Mathematics;2022-10-05

3. Derived factorization categories of non‐Thom–Sebastiani‐type sums of potentials;Proceedings of the London Mathematical Society;2022-09-22

4. Yoneda algebras and their singularity categories;Proceedings of the London Mathematical Society;2022-05-11

5. Auslander correspondence for triangulated categories;Algebra & Number Theory;2020-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3