Abstract
Abstract
We establish the first moment bound
$$\begin{align*}\sum_{\varphi} L(\varphi \otimes \varphi \otimes \Psi, \tfrac{1}{2}) \ll_\varepsilon p^{5/4+\varepsilon} \end{align*}$$
for triple product L-functions, where
$\Psi $
is a fixed Hecke–Maass form on
$\operatorname {\mathrm {SL}}_2(\mathbb {Z})$
and
$\varphi $
runs over the Hecke–Maass newforms on
$\Gamma _0(p)$
of bounded eigenvalue. The proof is via the theta correspondence and analysis of periods of half-integral weight modular forms. This estimate is not expected to be optimal, but the exponent
$5/4$
is the strongest obtained to date for a moment problem of this shape. We show that the expected upper bound follows if one assumes the Ramanujan conjecture in both the integral and half-integral weight cases.
Under the triple product formula, our result may be understood as a strong level aspect form of quantum ergodicity: for a large prime p, all but very few Hecke–Maass newforms on
$\Gamma _0(p) \backslash \mathbb {H}$
of bounded eigenvalue have very uniformly distributed mass after pushforward to
$\operatorname {\mathrm {SL}}_2(\mathbb {Z}) \backslash \mathbb {H}$
.
Our main result turns out to be closely related to estimates such as
$$\begin{align*}\sum_{|n| < p} L(\Psi \otimes \chi_{n p},\tfrac{1}{2}) \ll p, \end{align*}$$
where the sum is over those n for which
$n p$
is a fundamental discriminant and
$\chi _{n p}$
denotes the corresponding quadratic character. Such estimates improve upon bounds of Duke–Iwaniec.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献