A Comparison of Heritability Estimates by Classical Twin Modeling and Based on Genome-Wide Genetic Relatedness for Cardiac Conduction Traits

Author:

Nolte Ilja M.,Jansweijer Joeri A.,Riese Hariette,Asselbergs Folkert W.,van der Harst Pim,Spector Timothy D.,Pinto Yigal M.,Snieder Harold,Jamshidi Yalda

Abstract

Twin studies have found that ~50% of variance in electrocardiogram (ECG) traits can be explained by genetic factors. However, genetic variants identified through genome-wide association studies explain less than 10% of the total trait variability. Some have argued that the equal environment assumption for the classical twin model might be invalid, resulting in inflated narrow-sense heritability (h2) estimates, thus explaining part of the ‘missing h2’. Genomic relatedness restricted maximum likelihood (GREML) estimation overcomes this issue. This method uses both family data and genome-wide coverage of common SNPs to determine the degree of relatedness between individuals to estimate both h2 explained by common SNPs and total h2. The aim of the current study is to characterize more reliably than previously possible ECG trait h2 using GREML estimation, and to compare these outcomes to those of the classical twin model. We analyzed ECG traits (heart rate, PR interval, QRS duration, RV5+SV1, QTc interval, Sokolow-Lyon product, and Cornell product) in up to 3,133 twins from the TwinsUK cohort and derived h2 estimates by both methods. GREML yielded h2 estimates between 47% and 68%. Classical twin modeling provided similar h2 estimates, except for the Cornell product, for which the best fit included no genetic factors. We found no evidence that the classical twin model leads to inflated h2 estimates. Therefore, our study confirms the validity of the equal environment assumption for monozygotic and dizygotic twins and supports the robust basis for future studies exploring genetic variants responsible for the variance of ECG traits.

Publisher

Cambridge University Press (CUP)

Subject

Genetics (clinical),Obstetrics and Gynecology,Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3