Sustainable Development and Biotechnology

Author:

Mannion Antoinette M.

Abstract

Sustainable development requires that resources are used as conservationally and as optimally as possible in order to maintain an adequate resource-base for future generations. It is not an easily-defined concept, nor is there any single way of achieving it. It does, however, focus on the environment, as this provides the resource-base that supports all society. Among the recently-evolved scientific developments, biotechnology has many applications that can improve resource-use. It involves the manipulation of organisms to undertake specific processes and includes genetic manipulation or ‘engineering’.In an environmental context, biotechnology has its greatest contribution to make in agriculture — especially by improving crop-yields. It offers opportunities to design crops for specific environments and to make crops more efficient producers of food-energy than otherwise. Biotechnology can thus manipulate primary energy-flows; it can also reduce fossil-fuel energy inputs into agricultural systems. It could also contribute to the mitigation of environmental problems such as deforestation and soil erosion. Both food- and fuel-energy resources are key components of sustainability. Sources produced biotechnologically, e.g. SCPs and biomass fuels, can supplement those produced conventionally.Resource recovery and recycling, and hazardous-waste disposal, are other environmentally-beneficial facets of biotechnology. These are equally pertinent to sustainable development because they extend the resource-base. In this context, biotechnology constitutes a vehicle for the improved manipulation of biogeochemical cycles.There are, however, potentially significant drawbacks in the use of biotechnology. These focus on technology transfer between the Developed and Developing World; this is economic and political, and relates to intellectual property rights, etc. Environmentally, the disadvantages concern the potential creation of ‘ecological ogres’ which could generate ecological disasters. Moreover, biotechnology relies heavily on the availability of a sustainable genepool, i.e. on biodiversity; indeed the two are interdependent. The high rates of extinction of plant and animal species that are currently occurring are thus limiting biotechnological opportunities for the future.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

Reference55 articles.

1. An end to smog?;Birch;ICI Roundel,1992

2. Biotech grows in Hong Kong;Gwynne;Nature,1991

3. Transgenic Crops

4. Metals biotechnology for developing countries and case studies from the Andean group, Chile and Canada

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3