Out of the frying pan and into the fire: effects of volcanic heat and other stressors on the conservation of a critically endangered plant in Hawai‘i

Author:

Gill Nathan SORCID,Stallman Jeffery KORCID,Pratt Linda,Lewicki Jennifer,Elias Tamar,Nadeau Patricia A,Yelenik Stephanie

Abstract

SummaryLoss of local biodiversity resulting from abrupt environmental change is a significant environmental problem throughout the world. Extinctions of plants are particularly important yet are often overlooked. Drawing from a case in Hawai‘i, a global hotspot for plant and other extinctions, we demonstrate an effort to better understand and determine priorities for the management of an endangered plant (‘Ihi makole or Portulaca sclerocarpa) in the face of rapid and extreme environmental change. Volcanic heat emissions and biological invasions have anecdotally been suggested as possible threats to the species. We integrated P. sclerocarpa outplanting with efforts to collect geological and ecological data to gauge the role of elevated soil temperatures and invasive grasses in driving P. sclerocarpa mortality and population decline. We measured soil temperature, soil depth, surrounding cover and P. sclerocarpa survivorship over three decades. The abundance of wild P. sclerocarpa decreased by 99.7% from the 1990s to 2021. Only 51% of outplantings persisted through 3–4 years. Binomial regression and structural equation modelling revealed that, among the variables we analysed, high soil temperatures were most strongly associated with population decline. Finding the niche where soil temperatures are low enough to allow P. sclerocarpa survival but high enough to limit other agents of P. sclerocarpa mortality may be necessary to increase population growth of this species.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

Reference54 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3