Blockchain’s potential in forest offsets, the voluntary carbon markets and REDD+

Author:

Kotsialou Grammateia,Kuralbayeva Karlygash,Laing TimothyORCID

Abstract

SummaryIncreasing net-zero commitments by individuals, companies and governments have been accompanied by the growth of the voluntary offset market, including Reducing Emissions from Deforestation and Forest Degradation (REDD+). Technologies, notably blockchain, are starting to enter the REDD+ space and may have the potential to address issues such as additionality, permanence, leakage and property and community rights. In this Perspective, we first examine voluntary markets and the role forest carbon offsets have played within them, highlighting the evolution of REDD+ and the issues that have hindered its development. We then examine the potential of blockchain to address each of the issues, using the literature and emerging experience from the use of blockchain in the forestry space. We find that the technology may have the potential to improve verifiability, reduce transaction costs and, to a lesser degree, aid in addressing additionality and permanence concerns. However, greater learning from the emerging use of blockchain in pilot projects is needed to fully assess and maximize its potential.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

Reference64 articles.

1. Applying Blockchain to the Australian Carbon Market

2. UNFCCC (2021) New financial alliance for net zero emissions launches. External press release, 21 April 2021 [www document]. URL https://unfccc.int/news/new-financial-alliance-for-net-zero-emissions-launches

3. Pachama (2020) Remove carbon. Restore forests. Harnessing AI to drive carbon capture and protect global forests [www document]. URL https://pachama.com

4. Big Data and International Relations

5. A review of the state of research, policies and strategies in addressing leakage from reducing emissions from deforestation and forest degradation (REDD+)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3