Abstract
We develop a theory of enlarged mixed Shimura varieties, putting the universal vectorial bi-extension defined by Coleman into this framework to study some functional transcendental results of Ax type. We study their bi-algebraic systems, formulate the Ax-Schanuel conjecture and explain its relation with the logarithmic Ax theorem and the Ax-Lindemann theorem which we shall prove. All these bi-algebraic and transcendental results extend their counterparts for mixed Shimura varieties. In the end we briefly discuss the André–Oort and Zilber–Pink type problems for enlarged mixed Shimura varieties.
Publisher
Cambridge University Press (CUP)
Subject
Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis