Numerical model of late Pleistocene and Holocene ice-sheet and shoreline dynamics in the southern Baltic Sea, Poland

Author:

Frydel Jerzy JanORCID

Abstract

AbstractThis paper reveals deglaciation palaeodynamics (Marine Oxygen Isotope Stage 2 [MIS 2]) in Poland and the southern Baltic Sea (SBS) development during marine transgression/regression phases (MIS 1) determined by a numerical modelling method. The introduced approach uses a high-level polynomial regression followed by the integral calculus of successive functions and an application of formulae. As a result, palaeogeographic relations from primary matrix transform instantly into palaeodynamics within a nested matrix. Accordingly, within 9 ka of the late Pleistocene, glacial recession dynamics increased by two orders of magnitude, from −8.5 m/yr between Leszno (L, 24 ka BP) and Poznań (Poz, 20–19 ka BP) phases, through several dozen (−37.2 m/yr, −60.6 m/yr, −90.7 m/yr) to the maximum average equalling −427.3 m/yr (max. −861.4 m/yr) between the Pomeranian (Pom, 17–16 ka BP) and the Gardno (G, 16.8–16.6 ka BP) phases. In turn, SBS coastline transgression and regression dynamics varied by three orders of magnitude. Since the Baltic Ice Lake (BIL, 10.5–10.3 ka BP) up to the Yoldia Sea (YS, 10–9.9 ka BP) regression was intense and equalled −56.8 m/yr (max. −128.7 m/yr), followed by marine transgression towards the Ancylus Lake (AL, 8.7–8.5 ka BP) at 21.43 m/yr through 9.30–2.20 m/yr during the Littorina Sea 1 and Littorina Sea 2 stages (LS1 and LS2, since 7.7 ka BP), eventually 0.51 m/yr in the last 6.05 ka. The 2 m sea-level rise scenario projections indicate approx. 3400 km2 of land and 684,000 inhabitants face flood risk around 2150–2240 CE, with marine transgression dynamics expected to range from 23.9–38.2 m/yr.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3