A novel workflow for streamflow prediction in the presence of missing gauge observations

Author:

Mbuvha RendaniORCID,Adounkpe Julien Y.P.ORCID,Houngnibo Mandela C.M.ORCID,Mongwe Wilson T.,Nikraftar Zahir,Marwala Tshilidzi,Newlands Nathaniel K.

Abstract

AbstractStreamflow predictions are vital for detecting flood and drought events. Such predictions are even more critical to Sub-Saharan African regions that are vulnerable to the increasing frequency and intensity of such events. These regions are sparsely gaged, with few available gaging stations that are often plagued with missing data due to various causes, such as harsh environmental conditions and constrained operational resources. This work presents a novel workflow for predicting streamflow in the presence of missing gage observations. We leverage bias correction of the Group on Earth Observations Global Water and Sustainability Initiative ECMWF streamflow service (GESS) forecasts for missing data imputation and predict future streamflow using the state-of-the-art temporal fusion transformers (TFTs) at 10 river gaging stations in the Benin Republic. We show by simulating missingness in a testing period that GESS forecasts have a significant bias that results in poor imputation performance over the 10 Beninese stations. Our findings suggest that overall bias correction by Elastic Net and Gaussian Process regression achieves superior performance relative to traditional imputation by established methods. We also show that the TFT yields high predictive skill and further provides explanations for predictions through the weights of its attention mechanism. The findings of this work provide a basis for integrating Global streamflow prediction model data and the state-of-the-art machine learning models into operational early-warning decision-making systems in resource-constrained countries vulnerable to drought and flooding due to extreme weather events.

Funder

DeepMind

Publisher

Cambridge University Press (CUP)

Reference40 articles.

1. Adounkpe, PJY , Alamou, E , Diallo, B and Ali, A (2021) Predicting discharge in catchment outlet using deep learning: Case study of the Ansongo–Niamey basin. In NeurIPS 2021 Workshop on Tackling Climate Change with Machine Learning.

2. GloFAS-ERA5 operational global river discharge reanalysis 1979–present

3. Long Short-Term Memory

4. Temporal Fusion Transformers for interpretable multi-horizon time series forecasting

5. Infilling of missing rainfall and streamflow data in the Shire River basin, Malawi – A self organizing map approach

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3