A novel filtering method for geodetically determined ocean surface currents using deep learning

Author:

Gibbs LauraORCID,Bingham Rory J.,Paiement Adeline

Abstract

Abstract Determining an accurate picture of ocean currents is an important societal challenge for oceanographers, aiding our understanding of the vital role currents play in regulating Earth’s climate, and in the dispersal of marine species and pollutants, including microplastics. The geodetic approach, which combines satellite observations of sea level and Earth’s gravity, offers the only means to estimate the dominant geostrophic component of these currents globally. Unfortunately, however, geodetically-determined geostrophic currents suffer from high levels of contamination in the form of geodetic noise. Conventional approaches use isotropic spatial filters to improve the signal-to-noise ratio, though this results in high levels of attenuation. Hence, the use of deep learning to improve the geodetic determination of the ocean currents is investigated. Supervised machine learning typically requires clean targets from which to learn. However, such targets do not exist in this case. Therefore, a training dataset is generated by substituting clean targets with naturally smooth climate model data and generative machine learning networks are employed to replicate geodetic noise, providing noisy input and clean target pairs. Prior knowledge of the geodetic noise is exploited to develop a more realistic training dataset. A convolutional denoising autoencoder (CDAE) is then trained on these pairs. The trained CDAE model is then applied to unseen real geodetic ocean currents. It is demonstrated that our method outperforms conventional isotropic filtering in a case study of four key regions: the Gulf Stream, the Kuroshio Current, the Agulhas Current, and the Brazil-Malvinas Confluence Zone.

Funder

Natural Environment Research Council

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3