A Study of Non-specific Complement-fixation with particular reference to the Interaction of Normal Serum and certain Non-antigenic substances

Author:

Mackie T. J.,Finkelstein M. H.

Abstract

1. When a solution of commercial peptone is substituted for antigen in a complement-fixation test with the unheated normal serum of certain species (man, ox, sheep, horse, rabbit, white rat), a definite fixation reaction occurs both at 37° C. and at 0° C. In the ox, sheep, horse and rabbit this property of serum is partially stable at 55° C., but normal human serum and the serum of the white rat are inactive after heating at this temperature. The property is resident mainly in the carbonic-acid-insoluble globulins of the serum.2. The same results are obtained when ethyl alcohol diluted with several volumes of normal saline solution is substituted for antigen in a complement-fixation test with normal serum.3. Analysis of these reactions shows a close correspondence with complement-fixation by the sera of normal animals plus the Wassermann “antigen”—the Wassermann reaction of normal animals.4. Marked complement-fixation effects are also obtained with heated normal serum of the rabbit, ox, sheep, horse plus cholesterol suspension, and particularly cholesterolised-peptone, these effects occurring in parallel with those produced by serum plus alcohol-saline, peptone solutions and the Wassermann “antigen.” The heated normal serum of the pig, white rat and guinea-pig do not exhibit these reactions, and the same applies to heated normal human serum. Unheated pig serum fails to react. Such results also elicit a close relationship between these non-specific reactions and the Wassermann reactions of normal animals.5. The reacting property is absent from the serum (heated and unheated) of young rabbits during the first 2 to 3 weeks of life, but appears soon after this (e.g. by the 37th day) and is progressive in development. Its development in early life runs parallel to that of the natural haemolytic property of the serum for sheep's blood (due to a natural antibody-like substance). The two properties are, however, independent as illustrated by absorption tests.6. Besides the agents referred to above as capable of fixing complement along with normal sera, other substances possess a similar property, e.g. certain alcohols, sodium oleate, tissue proteins, certain amino-acids and sodium nucleate. Commercial peptone purified by precipitation with alcohol is equally active with the original material. Cholesterolisation of these agents may yield a product whose activity is greater than that due to summation of effects.7. Wassermann-positive and -negative human sera have been tested in the complement-fixation reaction with certain of these “pseudo-antigens,” viz. alcohol-saline, peptone, cholesterol, and cholesterolised-peptone, but a uniform parallelism has not been demonstrated between the reactions with these agents and the Wassermann effect. Some Wassermann-positive sera react also with alcohol-saline, peptone, cholesterol and cholesterolised-peptone, while sera from selected normal persons are quite inactive. A considerable proportion of Wassermann-positive sera yields definite complement-fixation with cholesterol and cholesterolised-peptone; a small proportion of Wassermann-negative sera reacts with these agents.8. The thermolability of the serum principles acting with various “pseudoantigens” has been studied by testing unheated serum and serum heated at temperatures ranging from 46° to 60° C. Two types of thermolability curve have been demonstrated with different specimens of rabbit serum: (1) a more or less progressive weakening of the various reactions with inactivation at 60° C.; (2) inactivation of the effects with Wassermann “antigen,” alcoholsaline and cholesterol at 50–52° C., activation of the effects with the Wassermann “antigen” and cholesterol at 54–56°C. and inactivation again above 60° C.; in this case the curves for peptone and cholesterolised-peptone do not show such double inactivation. Unheated normal human serum yields reactions with the various agents (including the Wassermann “antigen”) but inactivation occurs at 50° to 54° C. whereas certain syphilitic sera yield thermolability curves somewhat similar to type (1) of rabbit serum, with inactivation at 60° C. or over.

Publisher

Cambridge University Press (CUP)

Subject

Public Health, Environmental and Occupational Health,Immunology

Reference15 articles.

1. Certain factors in the flocculation test for syphilis

2. Sachs H. and Altmann K. (1908). Berlin, klin. Wochenschr. Nr. 10. See also KolleWassermann's Handbuch d. path. Mikroorganismen, Ergänzbd. 1909, 2, 455.

3. On the Immunological Nature of the Principle in Serum responsible for the Wassermann Reaction, with reference also to the Flocculation Reaction of Sachs and Georgi

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3