Langat virus encephalitis in mice II. The effect of irradiation

Author:

Webb H. E.,Wight D. G. D.,Wiernik G.,Platt G. S.,Smith C. E. G.

Abstract

Summary1. Irradiation in a whole body dose of 200 rads or more increased the sensitivity of mice to intraperitoneal infection with Langat virus so that the LD 50 was increased to about the intracerebral LD 50.2. In mice given 500 rads before infection: (a) viraemia was prolonged by about 5 days; (b) the IgM response was depressed; (c) the IgG response was delayed by about 3 days and depressed in titre; (d) virus concentration in the brain rose continuously until death on about the tenth day while in the controls it reached a peak on the fifth day then subsided; (e) histological changes in the CNS were delayed and minimal even at death; (f) irradiated mice died with little evidence of paralysis while the controls died with severe paralysis.3. In irradiated mice, protection was observed when antibody was administered on the third day following infection. Antibody given on the 3 days after infection to control mice aggravated the disease.4. The results in this and the preceding paper are discussed in relation to the pathogenesis of encephalitis. It is concluded that neuronal damage is caused both by virus multiplication in neurones and by damage superimposed by inflammatory changes with associated oedema and hypoxia. The inflammatory changes appear to be due to an allergic reaction to virus-antibody complexes formed in the circulation and in the central nervous system.We are grateful to Miss S. J. Illavia, B.Sc., and Miss G. E. Fairbairn for their skilled technical assistance; to the Department of Radiotherapy at St Thomas's Hospital for providing time and staff to help with the irradiation experiments; and to Mr S. Peto of the Microbiological Research Establishment for statistical advice.This work was made possible by a generous grant from the Wellcome Trust and the Endowment Funds of St Thomas's Hospital.

Publisher

Cambridge University Press (CUP)

Subject

Public Health, Environmental and Occupational Health,Immunology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3