Gain expressions for resonant inductive wireless power transfer links with one relay element

Author:

Mastri Franco,Mongiardo Mauro,Monti Giuseppina,Dionigi Marco,Tarricone Luciano

Abstract

In this paper, a resonant inductive wireless power transfer link using a relay element is analyzed. Different problems of practical interest are considered and solved by modeling the link as a lossy two-port network. According to the two-port network formalism, the standard gain definition (i.e. the power, the available, and the transducer gains) are used for describing the network behavior. Firstly, the case of a link with given parameters is considered and the analytical expressions of the optimal terminating impedances for maximizing the link gains are derived. Later on, the case of a link with given source and load is analyzed and the possibility of maximizing the performance by acting either on the transmitting or on the receiving side is investigated. It is shown that by using a single relay element, it is not always possible to maximize all the figures of merit that could be of interest in the WPT context. Theoretical data are validated by comparisons with circuital simulation results.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Energy Engineering and Power Technology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Movement Recognition Using Small Magnetically Coupled Coils;2023 22nd Mediterranean Microwave Symposium (MMS);2023-10-30

2. Textile Inductive Resonant Wireless Link for Movement Recognition;2023 IEEE MTT-S International Microwave Biomedical Conference (IMBioC);2023-09-11

3. Movement Recognition through Inductive Wireless Links: Investigation of Different Fabrication Techniques;Sensors;2023-09-08

4. Wearable Spiral Coils for Joint Flexion Monitoring;IEEE Sensors Letters;2023-09

5. Optimization of a capacitive wireless power transfer system with two electric field repeaters;International Journal of Circuit Theory and Applications;2023-02-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3