Clostridioides difficile infection surveillance in intensive care units and oncology wards using machine learning

Author:

Ötleş ErkinORCID,Balczewski Emily A.ORCID,Keidan Micah,Oh Jeeheh,Patel Alieysa,Young Vincent B.,Rao Krishna,Wiens Jenna

Abstract

AbstractObjective:Screening individuals admitted to the hospital for Clostridioides difficile presents opportunities to limit transmission and hospital-onset C. difficile infection (HO-CDI). However, detection from rectal swabs is resource intensive. In contrast, machine learning (ML) models may accurately assess patient risk without significant resource usage. In this study, we compared the effectiveness of swab surveillance to daily risk estimates produced by an ML model to identify patients who will likely develop HO-CDI in the intensive care unit (ICU) setting.Design:A prospective cohort study was conducted with patient carriage of toxigenic C. difficile identified by rectal swabs analyzed by anaerobic culture and polymerase chain reaction (PCR). A previously validated ML model using electronic health record data generated daily risk of HO-CDI for every patient. Swab results and risk predictions were compared to the eventual HO-CDI status.Patients:Adult inpatient admissions taking place in University of Michigan Hospitals’ medical and surgical intensive care units and oncology wards between June 6th and October 8th, 2020.Results:In total, 2,979 admissions, representing 2,044 patients, were observed over the course of the study period, with 39 admissions developing HO-CDIs. Swab surveillance identified 9 true-positive and 87 false-positive HO-CDIs. The ML model identified 9 true-positive and 226 false-positive HO-CDIs; 8 of the true-positives identified by the model differed from those identified by the swab surveillance.Conclusion:With limited resources, an ML model identified the same number of HO-CDI admissions as swab-based surveillance, though it generated more false-positives. The patients identified by the ML model were not yet colonized with C. difficile. Additionally, the ML model identifies at-risk admissions before disease onset, providing opportunities for prevention.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Microbiology (medical),Epidemiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3