Hospital-acquired infections surveillance: The machine-learning algorithm mirrors National Healthcare Safety Network definitions

Author:

Lukasewicz Ferreira Stephani AmandaORCID,Franco Meneses Arateus Crysham,Vaz Tiago AndresORCID,da Fontoura Carvalho Otavio Luiz,Hubner Dalmora Camila,Pressotto Vanni Daiane,Ribeiro Berti Isabele,Pires dos Santos Rodrigo

Abstract

AbstractBackground:Surveillance of hospital-acquired infections (HAIs) is the foundation of infection control. Machine learning (ML) has been demonstrated to be a valuable tool for HAI surveillance. We compared manual surveillance with a supervised, semiautomated, ML method, and we explored the types of infection and features of importance depicted by the model.Methods:From July 2021 to December 2021, a semiautomated surveillance method based on the ML random forest algorithm, was implemented in a Brazilian hospital. Inpatient records were independently manually searched by the local team, and a panel of independent experts reviewed the ML semiautomated results for confirmation of HAI.Results:Among 6,296 patients, manual surveillance classified 183 HAI cases (2.9%), and a semiautomated method found 299 HAI cases (4.7%). The semiautomated method added 77 respiratory infections, which comprised 93.9% of the additional HAIs. The ML model considered 447 features for HAI classification. Among them, 148 features (33.1%) were related to infection signs and symptoms; 101 (22.6%) were related to patient severity status, 51 features (11.4%) were related to bacterial laboratory results; 40 features (8.9%) were related to invasive procedures; 34 (7.6%) were related to antibiotic use; and 31 features (6.9%) were related to patient comorbidities. Among these 447 features, 229 (51.2%) were similar to those proposed by NHSN as criteria for HAI classification.Conclusion:The ML algorithm, which included most NHSN criteria and >200 features, augmented the human capacity for HAI classification. Well-documented algorithm performances may facilitate the incorporation of AI tools in clinical or epidemiological practice and overcome the drawbacks of traditional HAI surveillance.

Publisher

Cambridge University Press (CUP)

Reference20 articles.

1. An evaluation of surveillance methods for detecting infections in hospital inpatients

2. Novelty detection using one-class Parzen density estimator. An application to surveillance of nosocomial infections;Cohen;Stud Health Technol Inform,2008

3. Automating surveillance for healthcare-associated infections: Rationale and current realities (Part I/III)

4. Changes in Prevalence of Health Care–Associated Infections in U.S. Hospitals

5. Do we need hundreds of classifiers to solve real-world classification problems?;Fernández-Delgado;J Mach Learn Res,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3