Extending the critical period for weed control model to better include weed succession using common sunflower as a mimic weed in high-yielding cotton

Author:

Charles Graham W.ORCID,Taylor Ian N.ORCID

Abstract

Abstract The critical period for weed control (CPWC) adds value to integrated weed management by identifying the period during which weeds need to be controlled to avoid yield losses exceeding a defined threshold. However, the traditional application of the CPWC does not identify the timing of control needed for weeds that emerge late in the critical period. In this study, CPWC models were developed from field data in high-yielding cotton crops during three summer seasons from 2005 to 2008, using the mimic weed, common sunflower, at densities of two to 20 plants per square meter. Common sunflower plants were introduced at up to 450 growing degree days (GDD) after crop planting and removed at successive 200 GDD intervals after introduction. The CPWC models were described using extended Gompertz and logistic functions that included weed density, time of weed introduction, and time of weed removal (logistic function only) in the relationships. The resulting models defined the CPWC for late-emerging weeds, identifying a period after weed emergence before weed control was required to prevent yield loss exceeding the yield-loss threshold. When weeds emerged in sufficient numbers toward the end of the critical period, the model predicted that crop yield loss resulting from competition by these weeds would not exceed the yield-loss threshold until well after the end of the CPWC. These findings support the traditional practice of ensuring weeds are controlled before crop canopy closure, with later weed control inputs used as required.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3