Sweetpotato response to reduced rates of dicamba

Author:

Shankle Mark W.ORCID,Harvey Lorin M.ORCID,Meyers Stephen L.ORCID,Morris Callie J.ORCID

Abstract

AbstractA field study was conducted in Mississippi to determine the effect of reduced dicamba rates on sweetpotato crop tolerance and storage root yield, simulating off-target movement or sprayer tank contamination. Treatments included a nontreated control and four rates of dicamba [70 g ae ha−1 (1/8×), 35 g ae ha−1 (1/16×), 8.65 g ae ha−1 (1/64×), and 1.09 g ae ha−1 (1/512×)] applied either 3 d before transplanting (DBP) or 1, 3, 5, or 7 wk after transplanting (WAP). An additional treatment consisted of 560 g ae ha−1 (1×) dicamba applied 3 DBP. Crop injury ratings were taken 1, 2, 3, and 4 wk after treatment (WAT). Across application timings, predicted sweetpotato plant injury 1, 2, 3, and 4 WAT increased from 3T to 22%, 3% to 32%, 2% to 58%, and 1% to 64% as dicamba rate increased from 0 to 70 g ha−1 (1/8×), respectively. As dicamba rate increased from 1/512× to 1/8×, predicted No. 1 yield decreased from 127% to 55%, 103% to 69%, 124% to 31%, and 124% to 41% of the nontreated control for applications made 1, 3, 5, and 7 WAP, respectively. Similarly, as dicamba rate increased from 1/512× to 1/8×, predicted marketable yield decreased from 123% to 57%, 107% to 77%, 121% to 44%, and 110% to 53% of the nontreated control for applications made 1, 3, 5, and 7 WAP, respectively. Dicamba residue (5.3 to 14.3 parts per billion) was detected in roots treated with 1/16× or 1/8× dicamba applied 5 or 7 WAP and 1/64× dicamba applied 7 WAP with the highest residue detected in roots harvested from sweetpotato plants treated at 7 WAP. Collectively, care should be taken to avoid sweetpotato exposure to dicamba especially at 1/8× and 1/16× rates during the growing season.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference18 articles.

1. Frans, RE , Talbert, R , Marx, D , Crowley, H (1986) Experimental design and techniques for measuring and analyzing plant responses to weed control practices. Pages 29–46 in Camper ND, ed. Research Methods in Weed Science. Champaign, IL. Southern Weed Science Society

2. Soybean Tolerance to Early Preplant Applications of 2,4-D Ester, 2,4-D Amine, and Dicamba

3. Heap, I (2021) The International Herbicide-Resistant Weed Database. www.weedscience.org. Accessed: March 18, 2021

4. Auxin: An emerging regulator of tuber and storage root development

5. [USDA-NASS] U.S. Department of Agriculture–National Agriculture Statistics Service Vegetables 2019 Summary (2020). Available at: https://downloads.usda.library.cornell.edu/usda-esmis/files/02870v86p/0r967m63g/sn00bf58x/vegean20.pdfAccessed: September 13, 2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3