Abstract
Abstract
Late-emerging summer annual weeds are difficult to control in dry bean production fields. Dry bean is a poor competitor with weeds, due to its slow rate of growth and delayed canopy formation. Palmer amaranth is particularly difficult to control due to season-long emergence and resistance to acetolactate synthase (ALS)-inhibiting herbicides. Dry bean growers rely on PPI and preemergence residual herbicides for the foundation of their weed control programs; however, postemergence herbicides are often needed for season-long weed control. The objective of this experiment was to evaluate effect of planting date and herbicide program on late-season weed control in dry bean in western Nebraska. Field experiments were conducted in 2017 and 2018 near Scottsbluff, Nebraska. The experiment was arranged in a split-plot design, with planting date and herbicide program as main-plot and sub-plot factor, respectively. Delayed planting was represented by a delay of 15 days after standard planting time. The treatments EPTC + ethalfluralin, EPTC + ethalfluralin fb imazamox + bentazon, and pendimethalin + dimethenamid-P fb imazamox + bentazon, resulted in the lowest Palmer amaranth density three weeks after treatment (WAT) and the highest dry bean yield. The imazamox + bentazon treatment provided poor Palmer amaranth control and did not consistently result in Palmer amaranth density and biomass reduction, compared to the non-treated control. In 2018, the delayed planting treatment had reduced Palmer amaranth biomass with the pendimethalin + dimethenamid-P treatment, as compared to standard planting. Delaying planting did not reduce dry bean yield and had limited benefit in improving weed control in dry bean.
Publisher
Cambridge University Press (CUP)
Subject
Plant Science,Agronomy and Crop Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献