Universal Digital Twin - A Dynamic Knowledge Graph

Author:

Akroyd JethroORCID,Mosbach SebastianORCID,Bhave Amit,Kraft MarkusORCID

Abstract

Abstract This paper introduces a dynamic knowledge-graph approach for digital twins and illustrates how this approach is by design naturally suited to realizing the vision of a Universal Digital Twin. The dynamic knowledge graph is implemented using technologies from the Semantic Web. It is composed of concepts and instances that are defined using ontologies, and of computational agents that operate on both the concepts and instances to update the dynamic knowledge graph. By construction, it is distributed, supports cross-domain interoperability, and ensures that data are connected, portable, discoverable, and queryable via a uniform interface. The knowledge graph includes the notions of a “base world” that describes the real world and that is maintained by agents that incorporate real-time data, and of “parallel worlds” that support the intelligent exploration of alternative designs without affecting the base world. Use cases are presented that demonstrate the ability of the dynamic knowledge graph to host geospatial and chemical data, control chemistry experiments, perform cross-domain simulations, and perform scenario analysis. The questions of how to make intelligent suggestions for alternative scenarios and how to ensure alignment between the scenarios considered by the knowledge graph and the goals of society are considered. Work to extend the dynamic knowledge graph to develop a digital twin of the UK to support the decarbonization of the energy system is discussed. Important directions for future research are highlighted.

Funder

Horizon 2020 Framework Programme

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference114 articles.

1. CMCL Innovations (2020c) SRM Engine Suite, version 2020.1. Available at https://cmclinnovations.com/solutions/products/srm (accessed April 2020).

2. CARES (2020c) PIPS: Development of Multi-Step Processes in Pharma. Available at https://www.cares.cam.ac.uk/research/pips (accessed December 2020).

3. Centre for Digital Built Britain (2018) National Digital Twin Programme. Available at https://www.cdbb.cam.ac.uk/what-we-do/national-digital-twin-programme (accessed October 2020).

4. Department of Transport (United Kingdom) (2016) Vehicle Emissions Testing Programme: Data and Conclusions. Available at https://www.gov.uk/government/publications/vehicle-emissions-testing-programme-conclusions (accessed December 2020).

5. Aranda, CB , Corby, O , Das, S , Feigenbaum, L , Gearon, P , Glimm, B , Harris, S , Hawke, S , Herman, I , Humfrey, N , Michaelis, N , Ogbuji, C , Perry, M , Passant, A , Polleres, A , Prud’hommeaux, E , Seaborne, A and Williams, GT (2013) SPARQL 1.1 Overview, W3C Recommendation 21 March 2013. World Wide Web Consortium (W3C). Available at https://www.w3.org/TR/sparql11-overview/ (accessed December 2020).

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3