Anytime Monte Carlo

Author:

Murray Lawrence M.,Singh Sumeetpal S.ORCID,Lee Anthony

Abstract

Abstract Monte Carlo algorithms simulates some prescribed number of samples, taking some random real time to complete the computations necessary. This work considers the converse: to impose a real-time budget on the computation, which results in the number of samples simulated being random. To complicate matters, the real time taken for each simulation may depend on the sample produced, so that the samples themselves are not independent of their number, and a length bias with respect to compute time is apparent. This is especially problematic when a Markov chain Monte Carlo (MCMC) algorithm is used and the final state of the Markov chain—rather than an average over all states—is required, which is the case in parallel tempering implementations of MCMC. The length bias does not diminish with the compute budget in this case. It also occurs in sequential Monte Carlo (SMC) algorithms, which is the focus of this paper. We propose an anytime framework to address the concern, using a continuous-time Markov jump process to study the progress of the computation in real time. We first show that for any MCMC algorithm, the length bias of the final state’s distribution due to the imposed real-time computing budget can be eliminated by using a multiple chain construction. The utility of this construction is then demonstrated on a large-scale SMC $ {}^2 $ implementation, using four billion particles distributed across a cluster of 128 graphics processing units on the Amazon EC2 service. The anytime framework imposes a real-time budget on the MCMC move steps within the SMC $ {}^2 $ algorithm, ensuring that all processors are simultaneously ready for the resampling step, demonstrably reducing idleness to due waiting times and providing substantial control over the total compute budget.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference40 articles.

1. Analysis of parallel replicated simulations under a completion time constraint

2. Murray, LM (2011) GPU acceleration of the particle filter: The metropolis resampler. In DMMD: Distributed Machine Learning and Sparse Representation with Massive Data Sets. http://arxiv.org/abs/1202.6163.

3. The Markov renewal theorem and related results;Alsmeyer;Markov Processes and Related Fields,1997

4. Discrete Event Simulations and Parallel Processing: Statistical Properties

5. Resampling algorithms and architectures for distributed particle filters

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3