INCOMPLETENESS VIA PARADOX AND COMPLETENESS

Author:

DEAN WALTER

Abstract

AbstractThis paper explores the relationship borne by the traditional paradoxes of set theory and semantics to formal incompleteness phenomena. A central tool is the application of the Arithmetized Completeness Theorem to systems of second-order arithmetic and set theory in which various “paradoxical notions” for first-order languages can be formalized. I will first discuss the setting in which this result was originally presented by Hilbert & Bernays (1939) and also how it was later adapted by Kreisel (1950) and Wang (1955) in order to obtain formal undecidability results. A generalization of this method will then be presented whereby Russell’s paradox, a variant of Mirimanoff’s paradox, the Liar, and the Grelling–Nelson paradox may be uniformly transformed into incompleteness theorems. Some additional observations are then framed relating these results to the unification of the set theoretic and semantic paradoxes, the intensionality of arithmetization (in the sense of Feferman, 1960), and axiomatic theories of truth.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy,Mathematics (miscellaneous)

Reference138 articles.

1. Completeness Before Post: Bernays, Hilbert, and the Development of Propositional Logic

2. G. Kreisel. Note on arithmetic models for consistent formulae of the predicate calculus. Fundamenta mathematicae, vol. 37 (for 1950, pub. 1951), pp. 265–285.

3. A new proof of Gödel’s results on non-provability of consistency;Vopĕnka;Bulletin de l’Académie Polonaise des Sciences,1966

4. Eine axiomatisierung der mengenlehre;Von Neumann;Journal für die reine und angewandte Mathematik,1925

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Depth of Gödel’s Incompleteness Theorems;Philosophia Mathematica;2022-01-17

2. Reflecting and Unfolding;Thinking and Calculating;2022

3. Gentzen’s ‘Cut Rule’ and Quantum Measurement in Terms of Hilbert Arithmetic. Metaphor and Understanding Modeled Formally;SSRN Electronic Journal;2022

4. CURRENT RESEARCH ON GÖDEL’S INCOMPLETENESS THEOREMS;The Bulletin of Symbolic Logic;2021-01-05

5. XV—On Consistency and Existence in Mathematics;Proceedings of the Aristotelian Society;2020-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3