ON THE RELATIONSHIP BETWEEN PLANE AND SOLID GEOMETRY

Author:

ARANA ANDREW,MANCOSU PAOLO

Abstract

Traditional geometry concerns itself with planimetric and stereometric considerations, which are at the root of the division between plane and solid geometry. To raise the issue of the relation between these two areas brings with it a host of different problems that pertain to mathematical practice, epistemology, semantics, ontology, methodology, and logic. In addition, issues of psychology and pedagogy are also important here. To our knowledge there is no single contribution that studies in detail even one of the aforementioned areas.In this paper our major concern is with methodological issues of purity and thus we treat the connection to other areas of the planimetry/stereometry relation only to the extent necessary to articulate the problem area we are after.Our strategy will be as follows. In the first part of the paper we will give a rough sketch of some key episodes in mathematical practice that relate to the interaction between plane and solid geometry. The sketch is given in broad strokes and only with the intent of acquainting the reader with some of the mathematical context against which the problem emerges. In the second part, we will look at a debate (on “fusionism”) in which for the first time methodological and foundational issues related to aspects of the mathematical practice covered in the first part of the paper came to the fore. We conclude this part of the paper by remarking that only through a foundational and philosophical effort could the issues raised by the debate on “fusionism” be made precise. The third part of the paper focuses on a specific case study which has been the subject of such an effort, namely the foundational analysis of the plane version of Desargues’ theorem on homological triangles and its implications for the relationship between plane and solid geometry. Finally, building on the foundational case study analyzed in the third section, we begin in the fourth section the analytic work necessary for exploring various important claims about “purity,” “content,” and other relevant notions.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy,Mathematics (miscellaneous)

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Introduction;Chasles and the Projective Geometry;2024

2. ONTOLOGICAL PURITY FOR FORMAL PROOFS;The Review of Symbolic Logic;2023-11-13

3. Pureza del método y construcción de teorías: el caso de Kronecker y Dedekind en teoría algebraica de números;Crítica (México D. F. En línea);2023-06-28

4. Pureza del método y práctica matemática: Desafíos y perspectivas;Análisis Filosófico;2023-05-01

5. Reasoning by Analogy in Mathematical Practice;Philosophia Mathematica;2023-02-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3