A STUDY OF TRUTH PREDICATES IN MATRIX SEMANTICS

Author:

MORASCHINI TOMMASO

Abstract

AbstractAbstract algebraic logic is a theory that provides general tools for the algebraic study of arbitrary propositional logics. According to this theory, every logic ${\cal L}$ is associated with a matrix semantics $Mo{d^{\rm{*}}}{\cal L}$. This article is a contribution to the systematic study of the so-called truth sets of the matrices in $Mo{d^{\rm{*}}}{\cal L}$. In particular, we show that the fact that the truth sets of $Mo{d^{\rm{*}}}{\cal L}$ can be defined by means of equations with universally quantified parameters is captured by an order-theoretic property of the Leibniz operator restricted to deductive filters of ${\cal L}$. This result was previously known for equational definability without parameters. Similarly, it was known that the truth sets of $Mo{d^{\rm{*}}}{\cal L}$ are implicitly definable if and only if the Leibniz operator is injective on deductive filters of ${\cal L}$ over every algebra. However, it was an open problem whether the injectivity of the Leibniz operator transfers from the theories of ${\cal L}$ to its deductive filters over arbitrary algebras. We show that this is the case for logics expressed in a countable language, and that it need not be true in general. Finally we consider an intermediate condition on the truth sets in $Mo{d^{\rm{*}}}{\cal L}$ that corresponds to the order-reflection of the Leibniz operator.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy,Mathematics (miscellaneous)

Reference35 articles.

1. The equational definability of truth predicates;Raftery;Reports on Mathematical Logic,2006

2. On the injectivity of the Leibniz operator;Descalço;Bulletin of the Section of Logic,2005

3. On reduced matrices

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Gentle Introduction to the Leibniz Hierarchy;Outstanding Contributions to Logic;2024

2. Abstract Algebraic Logic;Outstanding Contributions to Logic;2021-12-14

3. ON EQUATIONAL COMPLETENESS THEOREMS;The Journal of Symbolic Logic;2021-09-13

4. THE POSET OF ALL LOGICS I: INTERPRETATIONS AND LATTICE STRUCTURE;The Journal of Symbolic Logic;2021-06-10

5. THE POSET OF ALL LOGICS II: LEIBNIZ CLASSES AND HIERARCHY;The Journal of Symbolic Logic;2021-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3