On the linear cross-field instability problem

Author:

Dysthe K. B.,Misra K. D.

Abstract

A re-examination of the linear E x B instability problem for infinite stratified media gives results differing from those published. The main point is to warn against the application to inhomogeneous media of the usual instability criterion, as developed for homogeneous media. The fact that the dispersion relation gives complex values of ω for real k does not always indicate the existence of an instabifity. It could also describe propagation of a constant wave energy through an inhomogeneous medium. It is demonstrated that in certain situations it is possible to choose dependent variables in such a way that these two effects disentangle, allowing for a definite solution of the instability problem.In this paper the linear stability' problem for an infinite inhomogeneous, partially ionized gas penetrated by crossed electric and magnetic fields, is re-examined. Several authors (e.g. Reid 1968; Whitehead 1967, 1971; Cunnold 1969; Chimonas 1969; Linson & Workman 1970; looper & Walker 1971; Sato 1971; Sato & Tsuda 1972; Kato 1972) have considered the possibility that the so-called cross-field instability exists in the ionosphere. Our reason for treating the problem again is to point out a deficiency in the literature.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weakly nonlinear ion sound waves in gravitational systems;Physical Review E;2020-04-27

2. C The Plasma Dispersion Function;Waves and Oscillations in Plasmas;2016-04-19

3. Waves in a gravitational plasma ionosphere;Low Frequency Waves and Turbulence in Magnetized Laboratory Plasmas and in the Ionosphere;2016

4. Low frequency electrostatic waves propagating in plasmas with parameters varying along magnetic field lines;Plasma Sources Science and Technology;2015-12-15

5. Spectral properties of electrostatic drift wave turbulence in the laboratory and the ionosphere;Annales Geophysicae;2015-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3