Interaction of a relativistic electron beam with an inhomogeneous plasma

Author:

Dorman G.

Abstract

The investigation of the high-frequency interaction of a relativistic electron beam and a plasma is extended to include arbitrary variation of the plasma density. Analysing the coupled linearized Vlasov—Maxwell equations by means of a low-temperature expansion of the orbit integrals, a general equation for the electric field accurate to first order in the plasma temperature, beam temperature, and betatron frequency is obtained. This equation is applied to the investigations of transverse and longitudinal modes. A new transverse mode with |ω − kV0| ∼ ωβ is found to be collisionally unstable. The electrostatic instability is found to be slowed down by both low plasma temperature and low beam temperature, but the betatron oscillations increase the growth rate. A new longitidinal mode with |ω − kV0| ∼ ωβ, is found to be unstable for nonzero beam temperatures. The lowest order correction to the electrostatic growth rate due to a small plasma nonuniformity is obtained. The sign of this correction is found to depend critically on the shape of the inhomogeneity.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3