Author:
Chui A. Y. K.,Moffatt H. K.
Abstract
We construct numerical examples of a ‘modon’ (counter-rotating vortices) in an Euler flow by exploiting the analogy between steady Euler flows and magnetostatic equilibria in a perfectly conducting fluid. A numerical modon solution can be found by determining its corresponding magnetostatic equilibrium, which we refer to as a ‘magnetic moclon’. Such an equilibrium is obtained numerically by a relaxation procedure that conserves the topology of the relaxing field. Our numerical results show how the shape of a magnetic modon depends on its ‘signature’ (magnetic flux profile), and that these magnetic modons are unexpectedly unstable to non-symmetric perturbations. Diffusion can change the topology of the field through a reconnection process and separate the two magnetic eddies. We further show that the analogous Euler flow (or modon) behaves similar to a perturbed Hill's vortex.
Publisher
Cambridge University Press (CUP)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献