Author:
Schekochihin A. A.,Parker J. T.,Highcock E. G.,Dellar P. J.,Dorland W.,Hammett G. W.
Abstract
A scaling theory of long-wavelength electrostatic turbulence in a magnetised, weakly collisional plasma (e.g. drift-wave turbulence driven by ion temperature gradients) is proposed, with account taken both of the nonlinear advection of the perturbed particle distribution by fluctuating $\boldsymbol{E}\times \boldsymbol{B}$ flows and of its phase mixing, which is caused by the streaming of the particles along the mean magnetic field and, in a linear problem, would lead to Landau damping. It is found that it is possible to construct a consistent theory in which very little free energy leaks into high velocity moments of the distribution function, rendering the turbulent cascade in the energetically relevant part of the wavenumber space essentially fluid-like. The velocity-space spectra of free energy expressed in terms of Hermite-moment orders are steep power laws and so the free-energy content of the phase space does not diverge at infinitesimal collisionality (while it does for a linear problem); collisional heating due to long-wavelength perturbations vanishes in this limit (also in contrast with the linear problem, in which it occurs at the finite rate equal to the Landau damping rate). The ability of the free energy to stay in the low velocity moments of the distribution function is facilitated by the ‘anti-phase-mixing’ effect, whose presence in the nonlinear system is due to the stochastic version of the plasma echo (the advecting velocity couples the phase-mixing and anti-phase-mixing perturbations). The partitioning of the wavenumber space between the (energetically dominant) region where this is the case and the region where linear phase mixing wins its competition with nonlinear advection is governed by the ‘critical balance’ between linear and nonlinear time scales (which for high Hermite moments splits into two thresholds, one demarcating the wavenumber region where phase mixing predominates, the other where plasma echo does).
Publisher
Cambridge University Press (CUP)
Reference148 articles.
1. Kanekar, A. V. 2015 Phase mixing in turbulent magnetized plasmas. PhD thesis, University of Maryland, College Park (http://drum.lib.umd.edu/handle/1903/16418).
2. A Landau fluid model for dispersive magnetohydrodynamics
3. Electron temperature gradient driven turbulence
4. A fluid model with finite Larmor radius effects for mirror mode dynamics
5. Aspects of interplanetary plasma turbulence;Celnikier;Astron. Astrophys.,1987
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献