Abstract
This paper summarizes the results of an experimental program at Caltech wherein magnetohydrodynamically driven plasma jets are created and diagnosed. The theory modelling these jets, the main experimental results and their relevance to astrophysical jets are presented. The model explains how the jets are driven and why they self-collimate. Characteristic kink and Rayleigh–Taylor instabilities are shown to occur and the ramifications of these instabilities are discussed. Extending the experimental results to the astrophysical situation reveals a shortcoming in ideal magnetohydrodynamics (MHD) that must be remedied by replacing the ideal MHD Ohm’s law by the generalized Ohm’s law. It is shown that when the generalized Ohm’s law is used and the consequences of weak ionization are taken into account, an accretion disk behaves much like the electrodes, mass source and power supply used in the experiment.
Publisher
Cambridge University Press (CUP)
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献