Impact of wiggler magnetic field on wakefield generation and electron acceleration by Gaussian, super-Gaussian and Bessel–Gaussian laser pulses propagating in collisionless plasma

Author:

Abedi-Varaki M.ORCID,Daraei M.E.

Abstract

In this research, the process of electron acceleration and wakefield generation by Gaussian-like (GL), super-Gaussian (SG) and Bessel–Gaussian (BG) laser pulses through cold collisionless plasma in the presence of a planar magnetostatic wiggler are studied. Three different types of laser spatial profiles, GL, SG and BG, are considered. Additionally, using the hydrodynamics fluid equations, Maxwell's equations as well as the perturbation technique for GL, SG and BG laser pulses in the weakly nonlinear regime and in the presence of a planar magnetostatic wiggler, governing equations for analysing the laser wakefield and electron acceleration have been derived and compared correspondingly. In addition, the effect of some important factors, including the wiggler field strengths, laser intensity, pulse length, plasma electron density and laser frequency on the wakefield and the electron energy gain, have been investigated. Numerical results show that enhancing the wiggler magnetic field results in an increase in the amplitude of the wakefield. Furthermore, it is observed that in comparison with the wakefield amplitude excited by SG and GL laser pulses, the amplitude of the wakefield excited by BG laser pulse is larger when the wiggler field is enhanced. Moreover, it is realized that the type of the laser profile, selected laser parameters and wiggler magnetic field are the most decisive and effective factors in the wakefield amplitude and shape of wakefield generation through cold collisionless plasma. Also, it is seen that as the pulse length declines, the amplitude of the wakefield increases, and correspondingly the resonance positions shift to higher ${({\varOmega _w}/{\varOmega _p})_{max}}$ values.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3