Boundary-layer structure in a shock-generated plasma flow: Part 1. Analysis for equilibrium ionization

Author:

Knöös Stellan

Abstract

The structures of some laminar boundary layers in high-density, shock heated, 1 eV argon plasma flows have been investigated theoretically. The analysis is based upon a three-fluid continuum formulation. Boundary-layer equations have been solved numerically on a digital computer by a finite difference technique for the case of thermochemical equilibrium and no radiation and applied electromagnetic fields. The induced electric field has been considered and shown to be important. It strongly couples the diffusive motions of the electron and ion fluids, thus forming ambipolar motion except in a sheath region adjacent to the wall. Argon transport properties, calculated from simple kinetic theory, have been used in the analysis. Important parameters, such as the Prandtl number and the density-viscosity product have been found to vary one or two orders of magnitude in the argon plasma boundary layer, a finding in sharp contrast with results for classical, non-ionized boundary layers. Solutions have been developed for the simple Rayleigh's boundary layer (forming over an infinite flat plate with an impulsively started motion in its own plane) and for the shock-tube side-wall boundary layer (forming behind a plane, ionizing shock wave moving over an infinite, plane wall). Even in terms of appropriate similarity parameters, solutions (for e.g. velocity and temperature profiles) exhibit strong dependence upon free- stream conditions. Assumptions of chemical and temperature equilibria have been checked from the equilibrium solution. Results indicate equilibrium ionization would not be present in typical argon boundary layers, e.g. at temperatures below 9000 °K, at a pressure of 1 atm. Similarly, due to ineffective energy transfer rates between the electron and the heavy-particle fluids and the difference in electron and ion–atom thermal conductivities, the electron temperature would deviate from the heavy-particle temperature in the same temperature region. The electron temperature has been calculated in a linearized model and found to be larger than the ion–atom temperature.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3