The role of a density jump in the Kelvin—Helmholtz instability of compressible plasma

Author:

González A. G.,Gratton J.

Abstract

The hydromagnetic Kelvin–Helmholtz instability is relevant in many complex situations in astrophysical and laboratory plasmas. Many cases of interest are very complicated, since they involve the combined role of velocity shear, of density and magnetic field stratification, and of various geometries in compressible plasmas. In the present work we continue investigating the influence of various physical and geometrical parameters of the plasma on the Kelvin–Helmholtz modes. We use the general dispersion relation for the ideal compressible MHD modes localized near a velocity discontinuity between two uniform plasmas. We study analytically the existence and properties of the modes and their stability, for a velocity jump combined with a density jump, and for any relative orientation of B, u and k (B is continuous). Stability is analysed by means of a general procedure that allows discussion of any configuration and all kinds of perturbations. The boundaries between modes of different kinds are discussed. In contrast to the case of uniform density, for a density jump there are no monotonically unstable modes, only overstabilities. The unstable modes belong to two types. Those with the largest growth rates tend to monotonically unstable modes in the limit of uniform density, and are related to the torsional Alfvén mode. The other overstable modes have no analogue among the purely incompressible modes, and occur in a range of U that is stable in the incompressible limit. We derive bounds for the growth rate of the instability. The present results may serve as a guide to interpret results in more complicated and realistic situations as those occurring in laboratory and natural plasmas.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3