Author:
Bertrand P.,van Tuan Nguyen,Gros M.,Izrar B.,Feix M.,Gutierrez J.
Abstract
The Schrödinger equation describes the motion of a particle in a statistical sense. It consequently possesses the two main properties of the Vlasov equation (dynamic and statistic) and can replace this last equation provided we take sophisticated initial conditions. The scheme must be considered as a new attempt to discretize intelligently the amount of information contained in the phase space distribution and to stop, without destroying it, the flow of information which usually goes to high wavenumbers in velocity space. The method is applied to the breaking of highly nonlinear waves in a cold plasma (usually treated by the Lagrangian method) and to double beam instability. It is shown that such an Eulerian scheme works quite well with a much smaller number of discretized functions than are required in the regular Fourier—Fourier or Fourier-Hermite methods. The central point is the introduction of the phase space Wigner distribution function which is a useful mathematical tool in spite of its poor physical properties.
Publisher
Cambridge University Press (CUP)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献