Turbulent relaxation of a confined magnetofluid to a force-free state

Author:

Dahlburg Jill P.,Montgomery David,Doolen Gary D.,Turner Leaf

Abstract

Three-dimensional, pseudo-spectral computation is used to follow the evolution of a resistive, incompressible magnetofluid. The magnetofluid is confined by rigid, free-slip, perfectly-conducting square boundaries in the x, y directions (‘poloidal’ boundaries), and periodic boundary conditions are assumed in the z direction (‘toroidal’ direction). A constant, uniform d.c. magnetic field B0 is assumed in the z direction and a non-uniform current density j flows along it initially. Starting from a non-equilibrium hollow current profile, the evolution is followed for several tens of Alfvén transit times. Considerable small-scale turbulence develops, which causes energy to decay more rapidly than magnetic helicity. The average toroidal magnetic field at the (x, y) boundary reverses sign spontaneously. The near spatial constancy of the ratio jB/(jB) ≡ cos θ, in the relaxed state at late times, suggests that the state is nearly force-free. However, the ratio j. B/B2 ≡ α is considerably less uniform than is cos θ suggesting more residual disorder than a pure minimum-energy state would display.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3