Monte Carlo calculations for transport due to MHD modes

Author:

Punjabi Alkesh,Boozer Allen,Lam Maria,Kim Myung-Hee,Burke Kathy

Abstract

The three basic mechanisms that produce either classical or anomalous transport are spatial variation of magnetic field strength, spatial variation of electrostatic potential in magnetic surfaces, and loss of magnetic surfaces. A Monte Carlo code is written to study transport due to these three mechanisms interacting with collisional effects. The equations of motion are obtained from the canonical drift Hamiltonian, but non-canonical co-ordinates are used to simplify the integrations. The code is applied to the reversed-field-pinch ZT-40 and the Tokapole II. For ZT-40 the Bessel-function model is used to represent the magnetic field geometry. The effects of pitch-angle scattering, loop voltage and the break-up of magnetic surfaces resulting from resistive MHD perturbations on the drift particle trajectories are illustrated. The particle diffusion coefficients are obtained for varying amplitudes of resistive MHD perturbations. For Tokapole II the spectrum of both the ideal and resistive MHD perturbations is constructed from the experimental data. The drift trajectories for trapped and passing electrons in the presence of such perturbations are obtained. The particle diffusion coefficients for the neo-classical regime in Tokapole II are obtained for varying collision frequency. By comparing the transport coefficients for various groups of particles with the experimental data, we hope to obtain far more information on the transport mechanisms than can be obtained by the standard confinement time measurements. The various groups of particles that can be studied using the code include runaway electrons, thermal electrons, and both passing and trapped diagnostic beam ions.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3