Abstract
Hamiltonian extended magnetohydrodynamics (XMHD) is restricted to respect helical symmetry by reducing the Poisson bracket for the three-dimensional dynamics to a helically symmetric one, as an extension of the previous study for translationally symmetric XMHD (Kaltsas et al., Phys. Plasmas, vol. 24, 2017, 092504). Four families of Casimir invariants are obtained directly from the symmetric Poisson bracket and they are used to construct Energy–Casimir variational principles for deriving generalized XMHD equilibrium equations with arbitrary macroscopic flows. The system is then cast into the form of Grad–Shafranov–Bernoulli equilibrium equations. The axisymmetric and the translationally symmetric formulations can be retrieved as geometric reductions of the helically symmetric one. As special cases, the derivation of the corresponding equilibrium equations for incompressible plasmas is discussed and the helically symmetric equilibrium equations for the Hall MHD system are obtained upon neglecting electron inertia. An example of an incompressible double-Beltrami equilibrium is presented in connection with a magnetic configuration having non-planar helical magnetic axis.
Publisher
Cambridge University Press (CUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献