Recent theoretical progress in understanding coherent structures in edge and SOL turbulence

Author:

KRASHENINNIKOV S. I.,D'IPPOLITO D. A.,MYRA J. R.

Abstract

AbstractIn this paper we review some theoretical aspects of the dynamics of the mesoscale filaments extending along the magnetic field lines in the edge plasma, which are often called ‘blobs’. We start with a brief historical survey of experimental data and the main ideas on edge and SOL plasma transport, which finally evolved into the modern paradigm of convective very-intermittent cross-field edge plasma transport. We show that both extensive analytic treatments and numerical simulations demonstrate that plasma blobs with enhanced pressure can be convected coherently towards the wall. The mechanism of convection is related to an effective gravity force (e.g. owing to magnetic curvature effects), which causes plasma polarization and a corresponding E× B convection. The impacts of different effects (e.g. X-point magnetic geometry, plasma collisionality, plasma beta, etc.) on blob dynamics are considered. Theory and simulation predict, both for current tokamaks and for ITER, blob propagation speeds and cross-field sizes to be of the order of a few hundred meters per second and a centimeter, respectively, which are in reasonable agreement with available experimental data. Moreover, the concept of blobs as a fundamental entity of convective transport in the scrape-off layer provides explanations for observed outwards convective transport, intermittency and non-Gaussian statistics in edge plasmas, and enhanced wall recycling in both toroidal and linear machines.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 250 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3