On the possibility of magnetic fields and fluid flows parallel to the X-line in a re-connexion geometry

Author:

Cowley S. W. H.

Abstract

We consider the possibility of modifying the Sonnerup solution for incompressible fluid flow about an X-type re-connexion line, to include fields and flows parallel to the X line. We find that such fields and flows may change across the discontinuities of the Sonnerup solution. By considering the requirements imposed by a proper matching across the various regions of flow, and by the integral conservation properties of the diffusion region, we seek to find the restrictions that are imposed on this parallel field and flow, and on the arrangement of the discontinuity planes around the diffusion region. We find that four types of such arrangements are possible, each corresponding to a different set of restrictions on the parallel field and flow. In one case, where all the discontinuity planes intersect at a common line, the ‘ parallel’ parameters of the in-flow and out-flow regions may be arbitrarily and independently chosen. Of the remaining three cases, one contains solutions with uniform parallel fields ad flows, while the other two depend for their existence on large fluid flow or magnetic field shears across the two in-flow regions.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Transport and Diffusion;Physics of Solar Planetary Environments: Proceedings Of the International Symposium on Solar-Terrestrial Physics, June 7-18,1976 Boulder, Colorado Volume II;2013-03-22

2. Magnetopause reconnection across wide local time;Annales Geophysicae;2011-09-29

3. A MODEL FOR SOLAR POLAR JETS;The Astrophysical Journal;2009-01-07

4. Reconnection at the dayside magnetopause: Comparisons of global MHD simulation results with Cluster and Double Star observations;Journal of Geophysical Research: Space Physics;2008-05-08

5. The structure of reconnection layers: Application to the Earth’s magnetopause;Journal of Geophysical Research;1989

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3