Author:
ESFANDYARI-KALEJAHI A.,KOURAKIS I.,AKBARI-MOGHANJOUGHI M.
Abstract
AbstractThe amplitude modulation of ion-acoustic waves is investigated in a plasma consisting of adiabatic warm ions, and two different populations of thermal electrons at different temperatures. The fluid equations are reduced to nonlinear Schrödinger equation by employing a multi-scale perturbation technique. A linear stability analysis for the wave packet amplitude reveals that long wavelengths are always stable, while modulational instability sets in for shorter wavelengths. It is shown that increasing the value of the hot-to-cold electron temperature ratio (μ), for a given value of the hot-to-cold electron density ratio (ν), favors instability. The role of the ion temperature is also discussed. In the limiting case ν = 0 (or ν → ∞), which correspond(s) to an ordinary (single) electron-ion plasma, the results of previous works are recovered.
Publisher
Cambridge University Press (CUP)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献