Magnetohydrodynamic standing oscillations in a spherical dipole field

Author:

Murata H.

Abstract

The coupled toroidal and poloidal modes forming a standing oscillation along the line of force and propagating azimuthally in a spherical dipole magnetic field are investigated under the magnetohydrodynamic (MHD) approximation with infinite conductivity, including the pressure effect but neglecting compressibility. We obtain a linearized coupled differential equation. When the azimuthal wavenumber becomes zero in the coupled equation, the axisymmetric toroidal wave equation is obtained with no pressure effect. For a large azimuthal wavenumber, on the other hand, a differential equation of the poloidal wave associated with a compressional magnetic component, which is different from the equation hitherto obtained under the zero pressure term, is derived from the coupled equation. It is found that the fluid pressure perturbation acts on the poloidal wave like the spring for the stretched string model and then contributes to the enhancement of the eigenvalues of the standing oscillations, especially for the first few. In this case, the magnetic pressure perturbation is in antiphase to that of the fluid pressure.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3