Abstract
It is shown that the classical magnetohydrostatic equations of an infinitely conducting fluid reduce to the integrable potential Heisenberg spin equation subject to a Jacobian condition if the magnitude of the magnetic field is constant along individual magnetic field lines. Any solution of the constrained potential Heisenberg spin equation gives rise to a multiplicity of magnetohydrostatic equilibria which share the magnetic field line geometry. The multiplicity of equilibria is reflected by the local arbitrariness of the total pressure profile. A connection with the classical Da Rios equations is exploited to establish the existence of associated helically and rotationally symmetric equilibria. As an illustration, Palumbo's ‘unique’ toroidal isodynamic equilibrium is retrieved.
Publisher
Cambridge University Press (CUP)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献