Abstract
Ion-temperature-gradient-driven (ITG) turbulence is compared for two quasi-symmetric (QS) stellarator configurations to determine the relationship between linear growth rates and nonlinear heat fluxes. We focus on the quasi-helically symmetric (QHS) stellarator HSX and the quasi-axisymmetric (QAS) stellarator NCSX. In normalized units, HSX exhibits higher growth rates than NCSX, while heat fluxes in gyro-Bohm units are lower in HSX. These results hold for simulations made with both adiabatic and kinetic electrons. The results show that HSX has a larger number of subdominant modes than NCSX and that eigenmodes are more spatially extended in HSX. We conclude that the consideration of nonlinear physics is necessary to accurately assess the heat flux due to ITG turbulence when comparing QS stellarator equilibria.
Publisher
Cambridge University Press (CUP)
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献