Parametric interactions inside a magnetron

Author:

KAUP D. J.,EL-REEDY J. O.,THOMAS GARY E.

Abstract

The purpose of this work is to understand theoretically what are the possible noise levels in a magnetron or a crossed-field amplifier (CFA), due to parametric three-wave interactions in the electron plasma, at various operating parameters. Our approach is to use the cold-fluid equations and their Fourier decomposition into a background (DC) mode, a pump (RF) mode, and two other noise (RF) modes. The two RF noise modes are assumed to interact parametrically with the large RF pump mode, and to satisfy the standard resonance conditions for the sum of the wave vectors and sum of the frequencies. We use our previous results to determine the background mode and the RF pump mode. Any strong RF electric field propagating in a crossed-field electron vacuum device can drive a Brillouin sheath unstable by means of a Rayleigh instability, whenever a wave–particle resonance can be found inside the sheath. What happens physically is that, at the resonance, the laminar flow of the electrons is strongly disturbed, and a diffusion process ensues, whereby the electrons diffuse away from the resonance region. This upsets the balance in the Brillouin flow, causing the electrons to redistribute into a new average DC density profile – which may be far from the original Brillouin profile, but is a stationary solution of a nonlinear diffusion equation. Using these stationary density profiles, we can then study the propagation of small RF signals on such a DC background, as well as their parametric interactions with the RF pump wave, at various DC voltages and magnetic fields. In addition to being able to predict the operating regime and the DC current flow, these studies demonstrate that parametric interactions probably limit the operating voltage range of a typical magnetron or crossed-field amplifier to about 20% above the Hartree voltage.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. What Types of Space Charge Are Inherent to Different Models of Crossed-Field Devices?;2023 IEEE International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo);2023-11-13

2. Does a Diocotron Effect Exist in Magnetrons?;2022 IEEE 2nd Ukrainian Microwave Week (UkrMW);2022-11-14

3. On steady flows in smooth-walled magnetrons: Fundamental modes and no-cutoff flows in planar geometry;Physics of Plasmas;2005-11

4. Modeling of an A6 Relativistic Magnetron with Analytics and Numerics;Physica Scripta;2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3