A tutorial introduction to the statistical theory of turbulent plasmas, a half-century after Kadomtsev’sPlasma Turbulenceand the resonance-broadening theory of Dupree and Weinstock

Author:

Krommes John A.

Abstract

In honour of the 50th anniversary of the influential review/monograph on plasma turbulence by B. B. Kadomtsev as well as the seminal works of T. H. Dupree and J. Weinstock on resonance-broadening theory, an introductory tutorial is given about some highlights of the statistical–dynamical description of turbulent plasmas and fluids, including the ideas of nonlinear incoherent noise, coherent damping, and self-consistent dielectric response. The statistical closure problem is introduced. Incoherent noise and coherent damping are illustrated with a solvable model of passive advection. Self-consistency introduces turbulent polarization effects that are described by the dielectric function${\mathcal{D}}$. Dupree’s method of using${\mathcal{D}}$to estimate the saturation level of turbulence is described; then it is explained why a more complete theory that includes nonlinear noise is required. The general theory is best formulated in terms of Dyson equations for the covariance$C$and an infinitesimal response function$R$, which subsumes${\mathcal{D}}$. An important example is the direct-interaction approximation (DIA). It is shown how to use Novikov’s theorem to develop an$\boldsymbol{x}$-space approach to the DIA that is complementary to the original$\boldsymbol{k}$-space approach of Kraichnan. A dielectric function is defined for arbitrary quadratically nonlinear systems, including the Navier–Stokes equation, and an algorithm for determining the form of${\mathcal{D}}$in the DIA is sketched. The independent insights of Kadomtsev and Kraichnan about the problem of the DIA with random Galilean invariance are described. The mixing-length formula for drift-wave saturation is discussed in the context of closures that include nonlinear noise (shielded by${\mathcal{D}}$). The role of$R$in the calculation of the symmetry-breaking (zonostrophic) instability of homogeneous turbulence to the generation of inhomogeneous mean flows is addressed. The second-order cumulant expansion and the stochastic structural stability theory are also discussed in that context. Various historical research threads are mentioned and representative entry points to the literature are given. Some outstanding conceptual issues are enumerated.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3